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Dissipative Particle Dynamics and the like

e Simulation of shock waves at the atomistic level requires very large
systems

e Coarse-graining through stochastic dynamics which is Galilean invariant
— friction using relative velocities (consistence with hydrodynamics)

e Dissipative Particle Dynamics with conserved energy (DPDE)
@ can be used in nonequilibrium situations
@ replace a molecule or some group of atoms by a mesoparticle
@ consistent thermodynamics

@ input: static properties (ab-initio), dynamical parameters

e Collaboration with J.-B. Maillet (CEA/DAM) and J. Brennan (Army
Research Lab); 2 PhD students (A.-A. Homman and G. Faure)
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Dissipative particle dynamics with conserved energy

e Coarse-graining interpretation:
@ a (fragment of a) molecule is replaced by a mesoparticle
@ (qj, p;) describes the center of mass of the ith mesoparticle

@ missing degrees of freedom described by an internal energy ¢;

e Evolution at constant total energy H(q, p, e )+ Z p, Zs,

e Microscopic state law: entropies s; = s;(g;), internal temperature defined
from the entropy as

e Simplest case: harmonic internal degrees of freedom, T(¢) =¢/C,

J. Bonet Avalos and A. Mackie, Europhys. Lett. 40, 141-146 (1997)
P. Espafiol, Europhys. Lett. 40 631-636 (1997)
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Equations of motion
dg; = dt

dpi = Vq, V(q)dt + Z —yix () vij dt + oyx(ri) dW,
Wkl 1
dei = ;X rij) (% Vij 7“ <m; + m,)) dt — oy x(rij)vy - dWj;
where Wj; = —Wj;, x is a cut-off function and v;; = pi_ B
mj mj

Invariant measures

N
p(dqdpdE)Zf( q,p,€ ) <Zp,> exp (Zs )dqdpde
= i=1

e Fluctuation-dissipation relation
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Numerical integration of DPDE: our key contribution

e “Naive” schemes lead to internal energies €; < 0: simulation stopped!
@ this happens more often for small heat capacities
@ this will necessarily happen at some point for large systems

e Stable and accurate integration schemes?

@ Splitting strategy: Hamiltonian part vs. elementary stochastic
dynamics

@ elementary stochastic dynamics reduce to a dynamics on v;; only

@ superimpose a Metropolis correction for discretizations of these
reduced dynamics!, even in the nonequilibrium setting considered

e Pro/cons of this integrator:
@ automatically corrects for negative internal energies (stabilization)
o parallelization /threadability limited — dedicated schemes for that?

1G. Stoltz, J. Comput. Phys. (2017)

2A.-A. Homman, J.-B. Maillet, J. Roussel and G. Stoltz, J. Chem. Phys (2016)
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Detonation waves in nitromethane
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Particle velocity, temperature, progress variable, pressure

J.-B. Maillet, G. Vallverdu, N. Desbiens and G. Stoltz, Europhys. Lett. (2011)
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Orders of magnitude of current simulations

e At CEA/DAM
@ number of particles N ~ 10° — 108

@ number of cores: several thousands, with vectorized/threadable code
ExaSTAMP

@ number of steps 108, timestep At ~ 1 —5 x 10715

e CPU time: a few us/N/ts for simple LJ potential, x10 — 100 for
more complicated one

e At Army Research Lab (Aberdeen Proving Ground)
@ number of particles up to N =1,126,926,339

e machines: Thunder (USAF), Stampede2 (Texas Advanced Computing
Center), Trinity/KNL (Los Alamos)

@ 3,000 to 8,900 nodes (Intel Xeon Phi 7250 KNL or E5-2699v3);
between 4.3 and 27 PFLOPS/s (in double precision)

@ simulation time 0.5 ns
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Adaptive Multilevel Splitting
algorithms for rare event simulations

Tony Leliévre

Ecole des Ponts ParisTech and INRIA
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Motivation 1: Simulations of biological systems
Unbinding of a ligand from a protein

Trypsin with various conformational states of benzamidine

© Binding site reference atom
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Elementary time-step for the molecular dynamics = 107155
Dissociation time ~ 0.02s

Challenge: bridge the gap between timescales



Motivation 2: Radiation protection
Monte Carlo particle transport

o Source
« Detectors

Tunnel cross
section :
3mx50cm

Concrete tunnel with a neutron source

How to compute the neutron flux at the detector ?

Challenge: the flux is very small



Mathematical setting: rare event computation

Consider a stochastic process (X:):>0 and two stopping times 74
and 75. Objective: simulate and compute the probability of the
event {7 < 74} when P(75 < 74) is very small (1078 to 10718).

Basic idea of splitting technique: find intermediate events which are

easier to simulate:
{72, <7a} D {72, <7A} D ... D {Tzpr < 7a} D {78 < 7A}
and simulate the successive conditional events: for k =1,2,...,
{72, < 7a} knowing that {7, _, < 7a}

where 7, = inf{t, £(X;) > z} for a well chosen real valued
importance function £.

Adaptive feature: build the intermediate levels (z;);>1 on the fly.

— Adaptive Multilevel Splitting algorithm [Cérou, Guyader, Stoch.
Annal. Appl., (2007)]



Numerical results

Example 1: In collaboration with the group of K. Schulten

(C. Mayne and |. Teo), AMS is currently implemented in the
NAMD code. We have studied the unbinding event of benzamidine
from trypsin.

Estimated dissociation rate: kg = (260 4 240)s~! which is in the
same order of magnitude as the experimental rate (600 4- 300)s ™!,

Overall simulation time: 2.3us which is 4 orders of magnitude
shorter than than the estimated dissociation time.

MD setup: about 70 000 atoms, CHARMM36 force field, NPT
conditions (298 K).



Numerical results

Example 2: In collaboration with CEA (Eric Dumonteil, Cheikh
Diop and Henri Louvin), AMS is currently implemented in the
Tripoli code.

Neutron Flux
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Problem of interest (sPE 10,
http://www.spe.org/web/csp/index.html)
—div[A-(p, x)Vu (p, x)] = f(x) in Q, u® =0 on 0Q
where (4 is a parameter. We take
Ac(p x) = M, x)Ac(x), M x) = p+ (1= p)Ac(x)

Depending on the value of u, the central channel is present or not.
Very large contrast in A.: 100

_ ﬂ"
e

Representation of Ac(x)

Ae(u x) for p=1 Ac(, x) for p=0.1
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Model reduction approaches

—div[A: (1, )V (u, x)] = f(x) in Q, u* =0 on 90

@ Direct MsFEM approach: for each new u,
o compute the MsFEM basis functions:

(*)  —div[A(p, x)V 5 (1, x)] =0 in K, ¢ (1, ) = ¢? on OK

o solve the global problem on Span {¢5(,-), 1<i</}.
Too expensive!

@ Our approach: model reduction (PGD approach) on (%):

J
&5 (1, x) =~ 2(x) + > Y (x)aj(n)
j=1
for (hopefully) a small number J of terms. The decomposition is built
iteratively (greedy algorithm).
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Proper Generalized Decomposition (Ladeveze, Chinesta,
Nouy, . ..)

Idea to compute w(x, p):

@ represent the solution as a linear combination of tensor products of
small-dimensional functions:

X, ) = i(x)ay(p)

j>1

@ look iteratively for the best tensor product: once some approximation

Wn— 1X,U) ij

has been computed, improve it by considering

Wn(X> :u) = anl(xv M)Tq//’n(x)an(/l’)
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PGD within MsFEM

@ For a given parameter g, perform a MsFEM computation and adapt
the discretization parameters (H, h and oversampling).

This discretization will be kept unchanged.
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PGD within MsFEM

@ For a given parameter g, perform a MsFEM computation and adapt
the discretization parameters (H, h and oversampling).

This discretization will be kept unchanged.

@ Perform a PGD approach on ¢ (s, -), solution to
—div[A (1, )V 5 (1, x)] =0in K, ¢5(u,-) = ¢? on K
It amounts to writing

J
() ¢ x) = 77 (1, x) = BP(x) + D (x)ayi (1)

Jj=1
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PGD within MsFEM

@ For a given parameter g, perform a MsFEM computation and adapt
the discretization parameters (H, h and oversampling).

This discretization will be kept unchanged.

@ Perform a PGD approach on ¢ (s, -), solution to
—div[A (1, )V 5 (1, x)] =0in K, ¢5(u,-) = ¢? on K
It amounts to writing J
(9 97l x) ~ 67 (1, x) = $20x) + D w5 (x)ay(w)
j=1

@ For each new u:
o evaluate the basis functions ¢S (1, x) using (x)
@ solve the global problem on Span {(bf’J(u, ), 1<i < /}.
@ estimate the error

Alternative strategy: PGD on global problem followed by MsFEM discretization
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Numerical results (crude discretization)

p =1 (initial permeability field) p = 0.1 (central channel removed)

- | i?

MsFEM solution (no oversampling):

d-’ e H i T -
5 = : A 5
3 T -
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PGD approach for the computation of ¢5(u, -)
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PGD modes 17 (x) (top) and a;(u2) (bottom), j =1,.

Ni EI : E 2:

MsFEM basis functions ¢?(x) + Z —1 Y5 ()i (1) (u =1, 0.5 and 0.1):
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Error estimation (identical MsFEM discretization for any 1)

5

—e—ref: MsFEM solution
4.5 —e—ref: exact solution

error on Q (%)
o w
nN (6)] w (6] N
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The error remains under 5% for all p.
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