
Approches mathématiques pour la simulation

multi-échelle des matériaux

Claude Le Bris

Ecole des Ponts and Inria, FRANCE

http://cermics.enpc.fr/∼lebris

based on a series of works by
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Dissipative Particle Dynamics and the like

• Simulation of shock waves at the atomistic level requires very large
systems

• Coarse-graining through stochastic dynamics which is Galilean invariant
→ friction using relative velocities (consistence with hydrodynamics)

• Dissipative Particle Dynamics with conserved energy (DPDE)

can be used in nonequilibrium situations

replace a molecule or some group of atoms by a mesoparticle

consistent thermodynamics

input: static properties (ab-initio), dynamical parameters

• Collaboration with J.-B. Maillet (CEA/DAM) and J. Brennan (Army
Research Lab); 2 PhD students (A.-A. Homman and G. Faure)
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Dissipative particle dynamics with conserved energy

• Coarse-graining interpretation:

a (fragment of a) molecule is replaced by a mesoparticle

(qi , pi ) describes the center of mass of the ith mesoparticle

missing degrees of freedom described by an internal energy εi

• Evolution at constant total energy H(q, p, ε) = V (q) +
N∑
i=1

p2i
2mi

+
N∑
i=1

εi

• Microscopic state law: entropies si = si (εi ), internal temperature defined
from the entropy as

Ti (εi ) =
1

s ′i (εi )

• Simplest case: harmonic internal degrees of freedom, T (ε) = ε/Cv

J. Bonet Avalos and A. Mackie, Europhys. Lett. 40, 141-146 (1997)
P. Español, Europhys. Lett. 40 631-636 (1997)
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Equations of motion
dqi =

pi
mi

dt

dpi =−∇qiV (q)dt +
∑
i 6=j

−γijχ2(rij)vij dt + σijχ(rij) dWij ,

dεi =
1

2

∑
j 6=i

χ2(rij)

(
γijv

2
ij −

σ2ij
2

(
1

mi
+

1

mj

))
dt − σij χ(rij)vij · dWij

where Wij = −Wji , χ is a cut-off function and vij =
pi
mi
−

pj
mj

Invariant measures

ρ(dq dp dε) = f
(
H(q, p, ε)

)
g

(
N∑
i=1

pi

)
exp

(
N∑
i=1

si (εi )

)
dq dp dε,

• Fluctuation-dissipation relation

σij = σ, γij =
σ2βij(εi , εj)

2
, βij(εi , εj) =

1

2kB

(
1

Ti (εi )
+

1

Tj(εj)

)
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Numerical integration of DPDE: our key contribution

• “Naive” schemes lead to internal energies εi < 0: simulation stopped!

this happens more often for small heat capacities

this will necessarily happen at some point for large systems

• Stable and accurate integration schemes?

Splitting strategy: Hamiltonian part vs. elementary stochastic
dynamics

elementary stochastic dynamics reduce to a dynamics on vij only

superimpose a Metropolis correction for discretizations of these
reduced dynamics1, even in the nonequilibrium setting considered

• Pro/cons of this integrator:

automatically corrects for negative internal energies (stabilization)

parallelization/threadability limited → dedicated schemes for that2

1G. Stoltz, J. Comput. Phys. (2017)
2A.-A. Homman, J.-B. Maillet, J. Roussel and G. Stoltz, J. Chem. Phys (2016)
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Detonation waves in nitromethane

Particle velocity, temperature, progress variable, pressure

J.-B. Maillet, G. Vallverdu, N. Desbiens and G. Stoltz, Europhys. Lett. (2011)
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Orders of magnitude of current simulations

• At CEA/DAM

number of particles N ∼ 106 − 108

number of cores: several thousands, with vectorized/threadable code
ExaSTAMP

number of steps 106, timestep ∆t ∼ 1− 5× 10−15

CPU time: a few µs/N/ts for simple LJ potential, ×10− 100 for
more complicated one

• At Army Research Lab (Aberdeen Proving Ground)

number of particles up to N = 1, 126, 926, 339

machines: Thunder (USAF), Stampede2 (Texas Advanced Computing
Center), Trinity/KNL (Los Alamos)

3,000 to 8,900 nodes (Intel Xeon Phi 7250 KNL or E5-2699v3);
between 4.3 and 27 PFLOPS/s (in double precision)

simulation time 0.5 ns
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Adaptive Multilevel Splitting

algorithms for rare event simulations

Tony Lelièvre
Ecole des Ponts ParisTech and INRIA

Joint work with C.-E. Bréhier, F. Cérou, M. Gazeau, L. Goudenège,
A. Guyader, C. Mayne, M. Rousset and I. Teo



Motivation 1: Simulations of biological systems

Unbinding of a ligand from a protein

Elementary time-step for the molecular dynamics = 10−15
s

Dissociation time ≃ 0.02 s

Challenge: bridge the gap between timescales



Motivation 2: Radiation protection
Monte Carlo particle transport

Concrete tunnel with a neutron source

How to compute the neutron flux at the detector ?

Challenge: the flux is very small



Mathematical setting: rare event computation
Consider a stochastic process (Xt)t≥0 and two stopping times τA
and τB . Objective: simulate and compute the probability of the
event {τB < τA} when P(τB < τA) is very small (10−8 to 10−18).

Basic idea of splitting technique: find intermediate events which are
easier to simulate:

{τz1
< τA} ⊃ {τz2

< τA} ⊃ . . . ⊃ {τzmax
< τA} ⊃ {τB < τA}

and simulate the successive conditional events: for k = 1, 2, . . .,

{τzq
< τA} knowing that {τzq−1

< τA}

where τz = inf{t, ξ(Xt) > z} for a well chosen real valued
importance function ξ.

Adaptive feature: build the intermediate levels (zi )i≥1 on the fly.

−→ Adaptive Multilevel Splitting algorithm [Cérou, Guyader, Stoch.

Annal. Appl., (2007)]



Numerical results

Example 1: In collaboration with the group of K. Schulten
(C. Mayne and I. Teo), AMS is currently implemented in the
NAMD code. We have studied the unbinding event of benzamidine
from trypsin.

Estimated dissociation rate: koff = (260 ± 240)s−1 which is in the
same order of magnitude as the experimental rate (600 ± 300)s−1.

Overall simulation time: 2.3µs which is 4 orders of magnitude
shorter than than the estimated dissociation time.

MD setup: about 70 000 atoms, CHARMM36 force field, NPT
conditions (298 K).



Numerical results
Example 2: In collaboration with CEA (Eric Dumonteil, Cheikh
Diop and Henri Louvin), AMS is currently implemented in the
Tripoli code.
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Multiscale computations based on MsFEM:

model reduction and

goal-oriented a posteriori error estimation

Frédéric Legoll

Ecole des Ponts & project-team MATHERIALS, INRIA Paris

Joint works with Ludovic Chamoin (LMT Cachan)
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Problem of interest (SPE 10,

http://www.spe.org/web/csp/index.html)

−div
[

Aε(µ, x)∇uε(µ, x)
]

= f (x) in Ω, uε = 0 on ∂Ω

where µ is a parameter. We take

Aε(µ, x) = λ(µ, x)Aε(x), λ(µ, x) = µ+ (1− µ)λc(x)

Depending on the value of µ, the central channel is present or not.
Very large contrast in Aε: 10

6

Representation of λc(x)

Aε(µ, x) for µ = 1 Aε(µ, x) for µ = 0.1
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Model reduction approaches

−div
[

Aε(µ, x)∇uε(µ, x)
]

= f (x) in Ω, uε = 0 on ∂Ω

Direct MsFEM approach: for each new µ,

compute the MsFEM basis functions:

(⋆) − div
[

Aε(µ, x)∇φ
ε

i (µ, x)
]

= 0 in K , φεi (µ, ·) = φ0i on ∂K

solve the global problem on Span {φεi (µ, ·), 1 ≤ i ≤ I}.

Too expensive!

Our approach: model reduction (PGD approach) on (⋆):

φεi (µ, x) ≈ φ0i (x) +
J

∑

j=1

ψε

j (x)αj (µ)

for (hopefully) a small number J of terms. The decomposition is built
iteratively (greedy algorithm).
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Proper Generalized Decomposition (Ladevèze, Chinesta,

Nouy, . . . )

Idea to compute w(x , µ):

represent the solution as a linear combination of tensor products of
small-dimensional functions:

w(x , µ) =
∑

j≥1

ψj(x)αj (µ)

look iteratively for the best tensor product: once some approximation

wn−1(x , µ) =
n−1
∑

j=1

ψj(x)αj (µ)

has been computed, improve it by considering

wn(x , µ) = wn−1(x , µ)+ψn(x)αn(µ)
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PGD within MsFEM

For a given parameter µ0, perform a MsFEM computation and adapt
the discretization parameters (H, h and oversampling).

This discretization will be kept unchanged.
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PGD within MsFEM

For a given parameter µ0, perform a MsFEM computation and adapt
the discretization parameters (H, h and oversampling).

This discretization will be kept unchanged.

Perform a PGD approach on φεi (µ, ·), solution to

−div
[

Aε(µ, x)∇φ
ε

i (µ, x)
]

= 0 in K , φεi (µ, ·) = φ0i on ∂K

It amounts to writing

(⋆) φεi (µ, x) ≈ φ
ε,J
i (µ, x) = φ0i (x) +

J
∑

j=1

ψε

j (x)αj (µ)
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PGD within MsFEM

For a given parameter µ0, perform a MsFEM computation and adapt
the discretization parameters (H, h and oversampling).

This discretization will be kept unchanged.

Perform a PGD approach on φεi (µ, ·), solution to

−div
[

Aε(µ, x)∇φ
ε

i (µ, x)
]

= 0 in K , φεi (µ, ·) = φ0i on ∂K

It amounts to writing

(⋆) φεi (µ, x) ≈ φ
ε,J
i (µ, x) = φ0i (x) +

J
∑

j=1

ψε

j (x)αj (µ)

For each new µ:
evaluate the basis functions φε,Ji (µ, x) using (⋆)

solve the global problem on Span
{

φ
ε,J
i (µ, ·), 1 ≤ i ≤ I

}

.

estimate the error

Alternative strategy: PGD on global problem followed by MsFEM discretization
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Numerical results (crude discretization)

µ = 1 (initial permeability field) µ = 0.1 (central channel removed)

MsFEM solution (no oversampling):
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PGD approach for the computation of φεi (µ, ·)

PGD modes ψε

j (x) (top) and αj(µ) (bottom), j = 1, . . . , 5:

MsFEM basis functions φ0i (x) +
∑J

j=1 ψ
ε

j (x)αj (µ) (µ =1, 0.5 and 0.1):
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Error estimation (identical MsFEM discretization for any µ)
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ref: MsFEM solution

ref: exact solution

The error remains under 5% for all µ.
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https://www.rocq.inria.fr/matherials/
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